Java容器集合
容器主要包括 Collection 和 Map 两种,Collection 存储着对象的集合,而 Map 存储着键值对(两个对象)的映射表。
概览
容器主要包括 Collection 和 Map 两种,Collection 存储着对象的集合,而 Map 存储着键值对(两个对象)的映射表。
Collection
1. Set
- TreeSet:基于红黑树实现,支持有序性操作,例如根据一个范围查找元素的操作。但是查找效率不如 HashSet,HashSet 查找的时间复杂度为 O(1),TreeSet 则为 O(logN)。
- HashSet:基于哈希表实现,支持快速查找,但不支持有序性操作。并且失去了元素的插入顺序信息,也就是说使用 Iterator 遍历 HashSet 得到的结果是不确定的。
- LinkedHashSet:具有 HashSet 的查找效率,且内部使用双向链表维护元素的插入顺序。
2. List
- ArrayList:基于动态数组实现,支持随机访问。
- Vector:和 ArrayList 类似,但它是线程安全的。
- LinkedList:基于双向链表实现,只能顺序访问,但是可以快速地在链表中间插入和删除元素。不仅如此,LinkedList 还可以用作栈、队列和双向队列。
3. Queue
- LinkedList:可以用它来实现双向队列。
- PriorityQueue:基于堆结构实现,可以用它来实现优先队列。
Map
- TreeMap:基于红黑树实现。
- HashMap:基于哈希表实现。
- HashTable:和 HashMap 类似,但它是线程安全的,这意味着同一时刻多个线程可以同时写入 HashTable 并且不会导致数据不一致。它是遗留类,不应该去使用它。现在可以使用 ConcurrentHashMap 来支持线程安全,并且 ConcurrentHashMap 的效率会更高,因为 ConcurrentHashMap 引入了分段锁。
- LinkedHashMap:使用双向链表来维护元素的顺序,顺序为插入顺序或者最近最少使用(LRU)顺序。
容器中的设计模式
迭代器模式
Collection 继承了 Iterable 接口,其中的 iterator() 方法能够产生一个 Iterator 对象,通过这个对象就可以迭代遍历 Collection 中的元素。
从 JDK 1.5 之后可以使用 foreach 方法来遍历实现了 Iterable 接口的聚合对象。
1 | List<String> list = new ArrayList<>(); |
适配器模式
java.util.Arrays#asList() 可以把数组类型转换为 List 类型。
1 |
|
应该注意的是 asList() 的参数为泛型的变长参数,不能使用基本类型数组作为参数,只能使用相应的包装类型数组。
1 | Integer[] arr = {1, 2, 3}; |
也可以使用以下方式调用 asList():
1 | List list = Arrays.asList(1, 2, 3); |
源码分析
如果没有特别说明,以下源码分析基于 JDK 1.8。
在 IDEA 中 double shift 调出 Search EveryWhere,查找源码文件,找到之后就可以阅读源码。
ArrayList
1. 概览
因为 ArrayList 是基于数组实现的,所以支持快速随机访问。RandomAccess 接口标识着该类支持快速随机访问。
1 | public class ArrayList<E> extends AbstractList<E> |
数组的默认大小为 10。
1 | private static final int DEFAULT_CAPACITY = 10; |
2. 扩容
添加元素时使用 ensureCapacityInternal() 方法来保证容量足够,如果不够时,需要使用 grow() 方法进行扩容,新容量的大小为 oldCapacity + (oldCapacity >> 1)
,也就是旧容量的 1.5 倍。
扩容操作需要调用 Arrays.copyOf()
把原数组整个复制到新数组中,这个操作代价很高,因此最好在创建 ArrayList 对象时就指定大概的容量大小,减少扩容操作的次数。
1 | public boolean add(E e) { |
3. 删除元素
需要调用 System.arraycopy() 将 index+1 后面的元素都复制到 index 位置上,该操作的时间复杂度为 O(N),可以看出 ArrayList 删除元素的代价是非常高的。
1 | public E remove(int index) { |
4. Fail-Fast
modCount 用来记录 ArrayList 结构发生变化的次数。结构发生变化是指添加或者删除至少一个元素的所有操作,或者是调整内部数组的大小,仅仅只是设置元素的值不算结构发生变化。
在进行序列化或者迭代等操作时,需要比较操作前后 modCount 是否改变,如果改变了需要抛出 ConcurrentModificationException。
1 | private void writeObject(java.io.ObjectOutputStream s) |
5. 序列化
ArrayList 基于数组实现,并且具有动态扩容特性,因此保存元素的数组不一定都会被使用,那么就没必要全部进行序列化。
保存元素的数组 elementData 使用 transient 修饰,该关键字声明数组默认不会被序列化。
1 | transient Object[] elementData; // non-private to simplify nested class access |
ArrayList 实现了 writeObject() 和 readObject() 来控制只序列化数组中有元素填充那部分内容。
1 | private void readObject(java.io.ObjectInputStream s) |
序列化时需要使用 ObjectOutputStream 的 writeObject() 将对象转换为字节流并输出。而 writeObject() 方法在传入的对象存在 writeObject() 的时候会去反射调用该对象的 writeObject() 来实现序列化。反序列化使用的是 ObjectInputStream 的 readObject() 方法,原理类似。
1 | ArrayList list = new ArrayList(); |
Vector
1. 同步
它的实现与 ArrayList 类似,但是使用了 synchronized 进行同步。
1 | public synchronized boolean add(E e) { |
2. 与 ArrayList 的比较
- Vector 是同步的,因此开销就比 ArrayList 要大,访问速度更慢。最好使用 ArrayList 而不是 Vector,因为同步操作完全可以由程序员自己来控制;
- Vector 每次扩容请求其大小的 2 倍空间,而 ArrayList 是 1.5 倍。
3. 替代方案
可以使用 Collections.synchronizedList();
得到一个线程安全的 ArrayList。
1 | List<String> list = new ArrayList<>(); |
也可以使用 concurrent 并发包下的 CopyOnWriteArrayList 类。
1 | List<String> list = new CopyOnWriteArrayList<>(); |
CopyOnWriteArrayList
读写分离
写操作在一个复制的数组上进行,读操作还是在原始数组中进行,读写分离,互不影响。
写操作需要加锁,防止并发写入时导致写入数据丢失。
写操作结束之后需要把原始数组指向新的复制数组。
1 | public boolean add(E e) { |
适用场景
CopyOnWriteArrayList 在写操作的同时允许读操作,大大提高了读操作的性能,因此很适合读多写少的应用场景。
但是 CopyOnWriteArrayList 有其缺陷:
- 内存占用:在写操作时需要复制一个新的数组,使得内存占用为原来的两倍左右;
- 数据不一致:读操作不能读取实时性的数据,因为部分写操作的数据还未同步到读数组中。
所以 CopyOnWriteArrayList 不适合内存敏感以及对实时性要求很高的场景。
LinkedList
1. 概览
基于双向链表实现,使用 Node 存储链表节点信息。
1 | private static class Node<E> { |
每个链表存储了 first 和 last 指针:
1 | transient Node<E> first; |
2. 与 ArrayList 的比较
- ArrayList 基于动态数组实现,LinkedList 基于双向链表实现;
- ArrayList 支持随机访问,LinkedList 不支持;
- LinkedList 在任意位置添加删除元素更快。
HashMap
为了便于理解,以下源码分析以 JDK 1.7 为主。
1. 存储结构
内部包含了一个 Entry 类型的数组 table。
1 | transient Entry[] table; |
Entry 存储着键值对。它包含了四个字段,从 next 字段我们可以看出 Entry 是一个链表。即数组中的每个位置被当成一个桶,一个桶存放一个链表。HashMap 使用拉链法来解决冲突,同一个链表中存放哈希值和散列桶取模运算结果相同的 Entry。
1 | static class Entry<K,V> implements Map.Entry<K,V> { |
2. 拉链法的工作原理
1 | HashMap<String, String> map = new HashMap<>(); |
- 新建一个 HashMap,默认大小为 16;
- 插入 <K1,V1> 键值对,先计算 K1 的 hashCode 为 115,使用除留余数法得到所在的桶下标 115%16=3。
- 插入 <K2,V2> 键值对,先计算 K2 的 hashCode 为 118,使用除留余数法得到所在的桶下标 118%16=6。
- 插入 <K3,V3> 键值对,先计算 K3 的 hashCode 为 118,使用除留余数法得到所在的桶下标 118%16=6,插在 <K2,V2> 前面。
应该注意到链表的插入是以头插法方式进行的,例如上面的 <K3,V3> 不是插在 <K2,V2> 后面,而是插入在链表头部。
查找需要分成两步进行:
- 计算键值对所在的桶;
- 在链表上顺序查找,时间复杂度显然和链表的长度成正比。
3. put 操作
1 | public V put(K key, V value) { |
HashMap 允许插入键为 null 的键值对。但是因为无法调用 null 的 hashCode() 方法,也就无法确定该键值对的桶下标,只能通过强制指定一个桶下标来存放。HashMap 使用第 0 个桶存放键为 null 的键值对。
1 | private V putForNullKey(V value) { |
使用链表的头插法,也就是新的键值对插在链表的头部,而不是链表的尾部。
1 | void addEntry(int hash, K key, V value, int bucketIndex) { |
4. 确定桶下标
很多操作都需要先确定一个键值对所在的桶下标。
1 | int hash = hash(key); |
4.1 计算 hash 值
1 | final int hash(Object k) { |
4.2 取模
令 x = 1<<4,即 x 为 2 的 4 次方,它具有以下性质:
1 | x : 00010000 |
令一个数 y 与 x-1 做与运算,可以去除 y 位级表示的第 4 位以上数:
1 | y : 10110010 |
这个性质和 y 对 x 取模效果是一样的:
1 | y : 10110010 |
我们知道,位运算的代价比求模运算小的多,因此在进行这种计算时用位运算的话能带来更高的性能。
确定桶下标的最后一步是将 key 的 hash 值对桶个数取模:hash%capacity,如果能保证 capacity 为 2 的 n 次方,那么就可以将这个操作转换为位运算。
1 | static int indexFor(int h, int length) { |
5. 扩容-基本原理
设 HashMap 的 table 长度为 M,需要存储的键值对数量为 N,如果哈希函数满足均匀性的要求,那么每条链表的长度大约为 N/M,因此平均查找次数的复杂度为 O(N/M)。
为了让查找的成本降低,应该尽可能使得 N/M 尽可能小,因此需要保证 M 尽可能大,也就是说 table 要尽可能大。HashMap 采用动态扩容来根据当前的 N 值来调整 M 值,使得空间效率和时间效率都能得到保证。
和扩容相关的参数主要有:capacity、size、threshold 和 load_factor。
参数 | 含义 |
---|---|
capacity | table 的容量大小,默认为 16。需要注意的是 capacity 必须保证为 2 的 n 次方。 |
size | 键值对数量。 |
threshold | size 的临界值,当 size 大于等于 threshold 就必须进行扩容操作。 |
loadFactor | 装载因子,table 能够使用的比例,threshold = capacity * loadFactor。 |
1 | static final int DEFAULT_INITIAL_CAPACITY = 16; |
从下面的添加元素代码中可以看出,当需要扩容时,令 capacity 为原来的两倍。
1 | void addEntry(int hash, K key, V value, int bucketIndex) { |
扩容使用 resize() 实现,需要注意的是,扩容操作同样需要把 oldTable 的所有键值对重新插入 newTable 中,因此这一步是很费时的。
1 | void resize(int newCapacity) { |
6. 扩容-重新计算桶下标
在进行扩容时,需要把键值对重新放到对应的桶上。HashMap 使用了一个特殊的机制,可以降低重新计算桶下标的操作。
假设原数组长度 capacity 为 16,扩容之后 new capacity 为 32:
1 | capacity : 00010000 |
对于一个 Key,
- 它的哈希值如果在第 5 位上为 0,那么取模得到的结果和之前一样;
- 如果为 1,那么得到的结果为原来的结果 +16。
7. 计算数组容量
HashMap 构造函数允许用户传入的容量不是 2 的 n 次方,因为它可以自动地将传入的容量转换为 2 的 n 次方。
先考虑如何求一个数的掩码,对于 10010000,它的掩码为 11111111,可以使用以下方法得到:
1 | mask |= mask >> 1 11011000 |
mask+1 是大于原始数字的最小的 2 的 n 次方。
1 | num 10010000 |
以下是 HashMap 中计算数组容量的代码:
1 | static final int tableSizeFor(int cap) { |
8. 链表转红黑树
从 JDK 1.8 开始,一个桶存储的链表长度大于 8 时会将链表转换为红黑树。 应该是:从 JDK 1.8 开始, table的长度也就是HashMap的capacity(不是size)不能小于64而且在桶存储的链表长度为8时(准确的说是长度为7并且在继续塞第8个时),转换成红黑树,而不是超过8。
9. 与 HashTable 的比较
- HashTable 使用 synchronized 来进行同步。
- HashMap 可以插入键为 null 的 Entry。
- HashMap 的迭代器是 fail-fast 迭代器。
- HashMap 不能保证随着时间的推移 Map 中的元素次序是不变的。
ConcurrentHashMap
1. 存储结构
1 | static final class HashEntry<K,V> { |
ConcurrentHashMap 和 HashMap 实现上类似,最主要的差别是 ConcurrentHashMap 采用了分段锁(Segment),每个分段锁维护着几个桶(HashEntry),多个线程可以同时访问不同分段锁上的桶,从而使其并发度更高(并发度就是 Segment 的个数)。
Segment 继承自 ReentrantLock。
1 | static final class Segment<K,V> extends ReentrantLock implements Serializable { |
默认的并发级别为 16,也就是说默认创建 16 个 Segment。
1 | static final int DEFAULT_CONCURRENCY_LEVEL = 16; |
2. size 操作
每个 Segment 维护了一个 count 变量来统计该 Segment 中的键值对个数。
1 | /** |
在执行 size 操作时,需要遍历所有 Segment 然后把 count 累计起来。
ConcurrentHashMap 在执行 size 操作时先尝试不加锁,如果连续两次不加锁操作得到的结果一致,那么可以认为这个结果是正确的。
尝试次数使用 RETRIES_BEFORE_LOCK 定义,该值为 2,retries 初始值为 -1,因此尝试次数为 3。
如果尝试的次数超过 3 次,就需要对每个 Segment 加锁。
1 | /** |
3. JDK 1.8 的改动
JDK 1.7 使用分段锁机制来实现并发更新操作,核心类为 Segment,它继承自重入锁 ReentrantLock,并发度与 Segment 数量相等。
JDK 1.8 使用了 CAS 操作来支持更高的并发度,在 CAS 操作失败时使用内置锁 synchronized。
并且 JDK 1.8 的实现也在链表过长时会转换为红黑树。
LinkedHashMap
存储结构
继承自 HashMap,因此具有和 HashMap 一样的快速查找特性。
1 | public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V> |
内部维护了一个双向链表,用来维护插入顺序或者 LRU 顺序。
1 | /** |
accessOrder 决定了顺序,默认为 false,此时维护的是插入顺序。
1 | final boolean accessOrder; |
LinkedHashMap 最重要的是以下用于维护顺序的函数,它们会在 put、get 等方法中调用。
1 | void afterNodeAccess(Node<K,V> p) { } |
afterNodeAccess()
当一个节点被访问时,如果 accessOrder 为 true,则会将该节点移到链表尾部。也就是说指定为 LRU 顺序之后,在每次访问一个节点时,会将这个节点移到链表尾部,保证链表尾部是最近访问的节点,那么链表首部就是最近最久未使用的节点。
1 | void afterNodeAccess(Node<K,V> e) { // move node to last |
afterNodeInsertion()
在 put 等操作之后执行,当 removeEldestEntry() 方法返回 true 时会移除最晚的节点,也就是链表首部节点 first。
evict 只有在构建 Map 的时候才为 false,在这里为 true。
1 | void afterNodeInsertion(boolean evict) { // possibly remove eldest |
removeEldestEntry() 默认为 false,如果需要让它为 true,需要继承 LinkedHashMap 并且覆盖这个方法的实现,这在实现 LRU 的缓存中特别有用,通过移除最近最久未使用的节点,从而保证缓存空间足够,并且缓存的数据都是热点数据。
1 | protected boolean removeEldestEntry(Map.Entry<K,V> eldest) { |
LRU 缓存
以下是使用 LinkedHashMap 实现的一个 LRU 缓存:
- 设定最大缓存空间 MAX_ENTRIES 为 3;
- 使用 LinkedHashMap 的构造函数将 accessOrder 设置为 true,开启 LRU 顺序;
- 覆盖 removeEldestEntry() 方法实现,在节点多于 MAX_ENTRIES 就会将最近最久未使用的数据移除。
1 | class LRUCache<K, V> extends LinkedHashMap<K, V> { |
WeakHashMap
存储结构
WeakHashMap 的 Entry 继承自 WeakReference,被 WeakReference 关联的对象在下一次垃圾回收时会被回收。
WeakHashMap 主要用来实现缓存,通过使用 WeakHashMap 来引用缓存对象,由 JVM 对这部分缓存进行回收。
1 | private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> |
ConcurrentCache
Tomcat 中的 ConcurrentCache 使用了 WeakHashMap 来实现缓存功能。
ConcurrentCache 采取的是分代缓存:
- 经常使用的对象放入 eden 中,eden 使用 ConcurrentHashMap 实现,不用担心会被回收(伊甸园);
- 不常用的对象放入 longterm,longterm 使用 WeakHashMap 实现,这些老对象会被垃圾收集器回收。
- 当调用 get() 方法时,会先从 eden 区获取,如果没有找到的话再到 longterm 获取,当从 longterm 获取到就把对象放入 eden 中,从而保证经常被访问的节点不容易被回收。
- 当调用 put() 方法时,如果 eden 的大小超过了 size,那么就将 eden 中的所有对象都放入 longterm 中,利用虚拟机回收掉一部分不经常使用的对象。
1 | public final class ConcurrentCache<K, V> { |
[文章来源]([https://github.com/CyC2018/CS-Notes/blob/master/notes/Java%20%E5%AE%B9%E5%99%A8.md](https://github.com/CyC2018/CS-Notes/blob/master/notes/Java 容器.md))
.